Regular maps with nilpotent automorphism groups

نویسندگان

  • Aleksander Malnic
  • Roman Nedela
  • Martin Skoviera
چکیده

According to a folklore result, every regular map on an orientable surface with abelian automorphism group belongs to one of three infinite families of maps with one or two vertices. Here we deal with regular maps whose automorphism group is nilpotent. We show that each such map decomposes into a direct product of two maps H×K, where Aut(H) is a 2-group and K is a map with a single vertex and an odd number of semiedges. Many important properties of nilpotent maps follow from this decomposition. We show, for example, that apart from two well-defined classes of maps on at most two vertices and their duals, every nilpotent regular map has both its valency and face-size divisible by 4. We give a complete classification of nilpotent regular maps of nilpotency class 2 and 3, and prove that for every integer c ≥ 1 there are only finitely many simple regular maps whose automorphism group is nilpotent of class c. This is a joint work with Y. F. Ban, S. F. Du, Y. Liu, A. Malnič, and R. Nedela.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups with regular automorphisms of order four

An automorphism of a group G is called regular if it moves every element of G except the identity. BURNSIDE proved that a finite group G has a regular automorphism of order two if and only if G is an abelian group of odd order, and then the only such automorphism maps every element onto its inverse ([21, p. 230). More recently several authors considered the question: what groups can admit regul...

متن کامل

NILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM

In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...

متن کامل

Nilpotent Singer Groups

Let N be a nilpotent group normal in a group G. Suppose that G acts transitively upon the points of a finite non-Desarguesian projective plane P. We prove that, if P has square order, then N must act semi-regularly on P. In addition we prove that if a finite non-Desarguesian projective plane P admits more than one nilpotent group which is regular on the points of P then P has non-square order a...

متن کامل

Pseudocomplete Nilpotent Groups

Scmicomplctc nilpotcnt groups, that is, nilpotent groups with no outer automorphisms, have been of interest for many years. In this paper pscudocomplete nilpotent groups, that is, nilpotent groups in which the automorphism group and the inner automorphism group arc isomorphic (not equal), are constructed. When suitable conditions are placed on the pseudocomplete nilpotent group, the quotient of...

متن کامل

Regular maps with almost Sylow-cyclic automorphism groups, and classification of regular maps with Euler characteristic −p2

A regular map M is a cellular decomposition of a surface such that its automorphism group Aut(M) acts transitively on the flags of M. It can be shown that if a Sylow subgroup P ≤ Aut(M) has order coprime to the Euler characteristic of the supporting surface, then P is cyclic or dihedral. This observation motivates the topic of the current paper, where we study regular maps whose automorphism gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012